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Rationale and Technological Challenges
Objectives. The objective of this workpackage is to define a catalog of software met-
rics. In particular we analyze the metrics used in the Squale Model and tool. In
addition it offers a coherent set of software metrics for object-oriented languages on
top of which Squale practices will be based. There is a plethora of software metrics
[LK94, FP96, HS96, HK00, LM06] and a large amount of research articles. Still there
is a lack for a serious and practically-oriented evaluation of metrics. Often metrics
lacks the property that the software reengineer or quality expert can easily understand
the situation summarized by the metrics. In particular since the exact notion of cou-
pling and cohesion is complex, a particular focus on such point is important.

Technological Challenges. Since the goal of the Squale project is to assess the quality
of software system, we identify the following challenges for software metrics.

• Validated.

• Clearly Defined.

• Understandable.

Pertinence and Completeness of Quality Models. The pertinence of a model is based
on its capability to model/qualify a lot of complex practices from software metrics (de-
sign patterns or poorly structured code for example). The quality is a feature very
complex to capture. The second difficulty is to find a model which must be continuous
and with no threshold effect: it should avoid for example that cutting of a complex
method in 3 other complex methods - but more readable - spoils the result. The third
difficulty is to have a model universal and stable enough to allow change application
monitoring which can be use to compare similar applications using benchmarking. Fi-
nally, like other measures, quality indicators may be manipulated/deviated. The model
must be consequently simple to explain and rich enough at the same time to not be
deviated easily.

This document describes a selection of current software metrics that will be used in
Workpackage 1.3 to define more advanced elements (practices) of the Squale quality
model.
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Chapter1. The Squale Quality Model in a Nut-
shell

This section presents the main elements of the Squale software quality model as well as
their structural relationships. In the following section, we present other quality models
and show that they are different from the Squale one.

The quality model implemented in the Squale environment is based on software
metrics and their aggregations which we will detail just after and in more detail in
Workpackage 1.3. Here we illustrate one of the key aspects of the model and differ-
ence between software metrics and practices as defined in the Squale Model. If we
take the metric indicating the number of methods covered by tests, we get a software
metrics. To be able to qualify this raw metric and to be able to stress that from a quality
point of view it is important that complex methods are covered and that the impact
of simple accessor methods is lowered, Squale introduces a practice which combines
the previous metric with others such as the McCabe complexity. Hence by abstracting
from the immediate software metrics, the Squale model allows the reengineer to stress
and provide more meaningful quality oriented perceptions of the software.

The Squale model is composed of four elements, each having a different granular-
ity. Figure 1.1 presents the four levels of the Squale model. Starting from the most
fine-grained element, it is an aggregation of metrics, practices, criteria and factors.

aMetric

aPractice

aCriterion

aFactor

aMetricaMetric

aPracticeaPractice

... ...

Figure 1.1: Squale Software Quality Structuring Elements.

• A metric is a measurement directly computed from the program source code.
The Squale tool current implementation is based on 17 metrics.

• A practice assesses one quality of a model, from a "white box" technical point of
view. A practice is associated to one or more metrics. 50 practices are currently
implemented.

INRIA-.... 6 Squale -



• A criterion assesses one principle of software quality, from a "black box" point of
view. It averages a set of practices. Such a principle could be safety, simplicity,
or modularity. For now, 15 criteria are implemented.

• A factor represents the highest quality assessment, typically for non-technical
persons. A factor is computed over a set of averaged criteria. 6 factors are
currently available and are explained in a following section.
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Chapter2. Metrics Meta Model
A metric is a measurement on a source code. It is a function that returns a numer-
ical value which evaluates a source code. As such, metrics are considered as low
level. Literature on metrics provides a significant amount of metrics such as the well
known Depth Inheritance Tree (DIT, HNL) and Specialization Index (SIX) [LK94,
HS96, Kan02]. Figure 2.1 shows the different informations collected to fully represent
a metric. A metric is characterized by:

acronym an acronym to identify the metric.

names a name and a list of alternative names (a metric may have several names).

version a version number (the version number refers to possible different implementa-
tions of the same metric). This allows one to have an history of the metric.

formula a formula which computes the metric and returns the result of the metric.

scope a scope which declares the entities on which the metric can be computed.

references a bibliographic pointing to the articles precisely defining the metrics. This pro-
vides a complete documentation and we can know on which entities the metric
is based.

tools a list of tools which support the metric. This allows one to know tools influence
and traceability. supportedBy lists the list of tools implementing the metrics.
This provides some tools which can be used to compute the metrics. This allows
to know tools influence and traceability.

sample a reference sample and its associated result against which the metric can be tested
for non-regression. This allows one to evolve the metric with a Validation Code
(certification).

alternates possible metrics that could be used to replace the current one. Some metrics
compute the same things but differently. This helps substituting a metric by
another one in case tools do not support one metric but the other.

required metrics a (possibly empty) list of metrics which are used in the computation of the metric.

The output will be a metamodel for metric description.

Example. For the metric Depth of Inheritance Tree:

acronym := ’DIT’
name := ’Depth of Inheritance Tree’
alternateNames := #(’Hierarchy Nesting Level’)
version := ’1.0’
scope := Class
formula: aFamixClass
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       1..*

       1..*

Factor

Criteria

PracticeAuto
PracticeManual

        1..*

Source code

External Tool
substituableBy

name
language
metricsProposedByTool

Interface

acronym
name
alternateNames
version
formula
scope
definedInArticles
supportedBy

Metric

name
version
formula
ponderation
isDiscrete

Practice

validatedOn

1..1

1..1

1..*
1..*

use

isCalledBy

use

Figure 2.1: Meta model for metrics.

ˆ aFamixClass superclassHierarchy size
definedInArticles := nil
supportedBy := nil
substituable := nil
use := nil
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Chapter3. Software Metrics Assessment
3.1 Primitive Metrics

Primitive metrics target some basic aspects of source code entities (DIT, NOM), or
a simple combination of other primitives (WMC, SIX) to give an abstract, comparable
view of such entities. While simple to understand, their interpretation depends highly
on the context, including the program, its history, the programming language used, or
the development process followed by the team.

The following metrics are known as the CK metrics because Chidamber and Ke-
merer grouped them to define a commonly used metric suite [CK94]:

• WMC

• DIT

• NOC

• RFC

Some other primitive metrics have been defined by Lorenz and Kidd [LK94] :

• NOM

• NIM

• NRM

• SIX

Note that we do not list LCOM here since it was heavily criticized and revised. We
discuss it in the cohesion part below. In addition it should be noted that many metrics
and thresholds as defined by Lorentz are unclear or do not make real sense.
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Names Depth of Inheritance Tree, Hierarchy Nesting Level

Acronyms DIT, HNL

References [LK94, CK94, BMB96, GFS05, LH93, HM95, TNM08]

Definition The depth of a class within the inheritance hierarchy is the maximum length
from the class node to the root of the tree, measured by the number of ancestor
classes. The deeper a class within the hierarchy, the greater the number of meth-
ods it is likely to inherit, making it more complex to predict its behavior. Deeper
trees constitute greater design complexity, since more methods and classes are
involved, but enhance the potential reuse of inherited methods.

Scope Class

Analysis There is a clear lack of context definition. DIT does not take into account the
fact that the class can be a subclass in a framework, hence has a large DIT but
in the context of the application a small DIT value. Therefore its interpretation
may be misleading.

Since the main problem with DIT is that there is no distinction between the dif-
ferent kinds of inheritance, Tempero et al. [TNM08] have proposed an alternative
for Java. They distinguish two kinds of inheritance in Java: extend and imple-
ment. They distinguish three domains: user-defined classes, standard library and
third-party. They have introduced new metrics to provide on how much inher-
itance occurs in an application. Unfortunately, they do not propose metrics for
indicator of "good-design" or fault predictor.

DIT measures the number of ancestor classes that affect the measured class. In
case of multiple inheritance the definition of this metric is given as the longest
path from class to the root class, this does not indicate the number of classes
involved. Since excessive use of multiple inheritance is generally discouraged,
the DIT does not measure this.

Briand et al. [BMB96] have made an empirical validation of DIT, concluding
that the larger the DIT value, the greater the probability of fault detection.

Gyimothy et al. [GFS05] conclude that DIT is not as good predictor of fault than
the other set of CKmetrics and they say that this metric needs more investigation
to confirm their hypothesis : "A class located lower in a class inheritance lattice
than its peers is more fault-prone than they are".

Moreover, DIT was really often studied but in most cases this was made with
programs with few inheritance, and therefore this metric needs more empirical
validation for programs with more inheritance. Li and Henry [LH93] used the
DIT metric as a measure of complexity, where the deeper the inheritance, the
more complex the system is supposed to be. But as Hitz and Montazeri [HM95]
notice, this means that inheritance increases the complexity of a system while it
is considered a major advantage of the object-oriented paradigm.
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This metric as well as other CKmetrics should be put in perspective: one measure
is not really significant but the change of values between two measures should
bring more information. Also, this metric should be applied at different scope
because of its different interpretation depending on the context: counting only
the user-defined classes or the standard library too.

Names Number of Children

Acronyms NOC

References [CK94, GFS05]

Definition Number of children counts the immediate subclasses subordinated to a class in
the class hierarchy

Scope Class

Analysis This metric shows the impact and code reuse in terms of subclasses. Because of
change may impact all children, the more children have a class, the more changes
require testing. Therefore NOC is a good indicator to evaluate testability but also
impact of a class in its hierarchy. Because of counting only immediate subclass,
this metric is not sufficient to assess the quality of a hierarchy.

Gyimothy et al. studied this metric and didn’t state that it is a good fault detection
predictor. Briand et al. [BMB96] found NOC to be significant and they observed
that the larger the NOC, the lower the probability of fault detection, which seems
at first contradictory.

Marinescu and Ratiu [MR04] characterize the inheritance with this 2 metrics :
the Average Number of Derived Classes - the average of direct subclasses for all
the classes defined in the measured system (NOC) - and the Average Hierarchy
Height - the average of the Height of Inheritance tree (DIT). These 2 metrics
indicate not only if the inheritance is used by the system but also if there are
classes which use inheritance.

Names Number of Methods

Acronyms NOM

References [LK94]

Definition NOM represents the number of methods defined locally in a class, counting pub-
lic as well as private methods. Overridden methods are taken account too.

Scope Class
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Analysis NOM is a simple metric showing the complexity of a class in terms of responsi-
bilities. However, it does not make the difference between simple and complex
methods. WMC is better suited for that. NOM can be used to build ratio based
on methods.

Names Weighted Methods Per Class

Acronyms WMC

References [CK94]

Definition WMC is the sum of complexity of the methods which are defined in the class.
The complexity was originally the cyclomatic complexity.

Scope Class

Analysis This metric is often limited when people uses as weighted function the function
fct = 1. In such a case it corresponds to NOM. This metric is interesting
because it give an overall point of view of the class complexity.

Names Cyclomatic Complexity Metric

Acronyms V(G)

References [McC76]

Definition Cyclomatic complexity is the maximum number of linearly independent paths
in a method. A path is linear if there is no branch in the execution flow of the
corresponding code. This metric could be also called "Conditional Complexity",
as it is easier to count conditions to calculate V(G) - which most tools actually
do.

V (G) = e− n + p

where n is number of vertices, e the number of edges and p the number of con-
nected components.

Scope Method, Class

Analysis This metric is an indicator of the psychological complexity of the code: the
higher the V(G), the more difficult for a developer to understand the different
pathways and the result of these pathways - which can lead to higher risk of
introducing bugs. Therefore, one should pay attention to high V(G) methods.

Cyclomatic complexity is also directly linked to testing efforts: as V(G) in-
creases, more tests need to be done to increase test coverage and then lower
regression risks. Actually, V(G) can be linked to test coverage metrics:
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– V(G) is the maximum amount of test cases needed to achieve a complete
branch coverage

– V(G) is the minimum amount of test cases needed to achieve a complete
path coverage

At class level, cyclomatic complexity is the sum of the cyclomatic complexity of
every method defined in the class.

Names Essential Cyclomatic Complexity Metric

Acronyms eV(G)

References [McC76]

Definition Essential cyclomatic complexity is the cyclomatic complexity of the simplified
graph - i.e. the graph where every well structured control structure has been
replaced by a single statement. For instance, an simple "if-then-else" is well
structured because it has the same entry and the same exit: it can be simplified
into one statement. On the other hand, a "break" clause in a loop creates a new
exit in the execution flow: the graph can not be simplified into a single statement
in that case.

ev(G) = v(G)−m

where m is the number of subgraphs with a unique entry and a unique exit.

Scope Method, Class

Analysis This metric is an indicator of the degree of structuredness of the code, which has
effects on maintenance and modularisation efforts. Code with lots of "break",
"continue", "goto" or "return" clauses is more complexe to understand and more
difficult to simplify and divide into simpler routines.

As for V(G), one should pay attention to methods with high essential cyclomatic
complexity.

Names Number of Inherited Methods

Acronyms NIM

References [LK94, BDPW98]

Definition NIM is a simple measure showing the amount of behavior that a given class can
reuse. It counts the number of methods

Scope Class
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Analysis Inheriting from large superclasses can be a problem since maybe only a part of
the behavior is used/needed in the subclass. This is a limit of single inheritance
based object-oriented programming languages. It is also interesting to put this
metrics in perspective with the number of super sends and self send to method not
defined in the class, since it shows the glue between a class and its superclasses
based on invocation.

The number of methods inherited indicates the strength of the subclassing by
specialization. A low percentage of inherited method indicates poor subclassing.
Briand et al. [BDPW98] conclude that the more use of overriding methods is
being made, the more fault-prone it is.

Names Number of overRiden Methods

Acronyms NRM

References [LK94]

Definition NRM represents the number of methods that have been overridden i.e., defined
in the superclass and redefined in the class. This metric includes methods doing
super invocation to their parent method.

Scope Class

Analysis This metrics shows the customization made in a subclass over the behavior in-
herited. When the overridden methods are invoked by inherited methods, they
represent often important hook methods. A large number of overridden methods
indicates that the subclass really specializes its superclass behavior. However,
classes with a lot of super invocation are quite rare (For the namespace Visu-
alWorks.Core there are 1937 overridden methods for 229 classes: an average
equals to 8.4 overridden methods per class) When compared with the number
of added methods, this comparison offers a way to qualify the inheritance rela-
tionship: it can either be an inheritance relationship which mainly customizes its
parent behavior or it adds behavior to its parent one.

Names Specialization IndeX

Acronyms SIX

References [LK94, May99]

Definition

SIX =
NRM ×DIT

NOM + NIM
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The Specialization Index metric measures the extent to which subclasses override
their ancestors classes. This index is the ratio between the number of overrid-
den methods and total number of methods in a Class, weighted by the depth of
inheritance for this class. Lorenz and Kidd precise : "Methods that invoke the
superclass’ method or override template are not included".

Scope Class

Analysis This metric was developed specifically to capture the point that classes are struc-
tured in hierarchy which reuse code and specialize code of their superclasses.
It is well-defined, not ambiguous and easy to calculate. However, it is missing
theoretical and empirical validation. It is commonly accepted that the more the
Specialization Index is elevated, the more difficult is the class to maintain, but
there is no validation to prove it.

Moreover, this index does not care about the scope of the class. And, because
the SIX metric is based on the DIT metric, it has the same limits.

Rather than reading this index as a quality index, it should be read as an indicator
requiring classes to be analyzed with more attention.

Lorenz and Kidd state that the anomaly threshold is given as 15 % with NRM =
3, DIT = 1, NOM = 20 :

SIX =
3× 1
20

According to Mayer[May99], this measure seems reasonable and logical but in
practice it is so coarsely grained and inconsistent that it is useless. He shows
with two theoretical examples that this metric does not reflect the spontaneous
understanding and says that it would be enough to simply multiply the number
of overridden methods (NRM) by the DIT value : " dividing by the number of
methods adds nothing to this measure; in fact, it greatly reduces its accuracy".
Therefore we suggest not to use it.

Names Response For a Class

Acronyms RFC

References [CK94]

Definition RFC is the size of the response set of a class. The response set of a class includes
“all methods that can be invoked in response to a message to an object of the
class”. It includes local methods as well as methods in other classes.

Scope Class
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Analysis This metric reflects the class complexity and the amount of communication with
other classes. The larger the number of methods that may be invoked from a
class through messages, the greater the complexity of the class is.

Three points in the definition are imprecise and need further explanations:

– Although it is not explicit in the definition, the set of called methods should
include polymorphically invoked methods. Thus the response set does not
simply include signatures of methods.

– Inherited methods, as well as methods called through them, should be in-
clude in the set, as they may be called on any object of the class.

– It is not clear whether methods indirectly called through local methods
should be counted. If this is the case, the metric becomes computation-
ally expensive. In practice, the authors limit their definition to the first
level of nested calls, i.e., only methods directly called by local methods are
included in the set.

So many different implementations and interpretations make RFC unreliable for
comparison, unless a more precise definition is agreed upon.

Names Source Lines Of Code

Acronyms SLOC, LOC

References [Kan02]

Definition SLOC is the number of effective source lines of code

Scope Method, Class, Package, Project

Analysis Comments and blank lines are often ignored. This metric provides a raw approx-
imate of the complexity or amount of work. LOC does not convey the complex-
ity due to the flow of an execution. Correlating it with McCabe complexity is
important since we can get long a simple methods as well as complex ones.

For further information on the content of code, many tools calculate also the
Number of Commented Lines (CLOC) - lines containing comments, including
mixed lines where both comments and code are written - and also Percentage of
Comments witch is used as an indicator of readability of code.

Names Code Coverage

Acronyms

References
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Figure 3.1: Paths considered by Statement Coverage at 100%.

Definition This suite of metrics assesses how testing covers different parts of the source
code, which gives a measure of quality through confidence in code. Unit tests
are performed to check code against computable specifications and to determine
the reliability of the system. Different metrics evaluate different manners of
covering the code.

Scope Project, Method

Analysis There are three principal kinds of coverage:

– Statement Coverage: This metric computes the number of lines of code
covered by tests. But there is no guarantee of quality even if the cover-
age is 100 %. Covering all lines of code is useful to research broken code
or useless code but it does not determine if the returns of the methods are
complying with the expectations in all cases. This metric is easy to com-
pute but does not take into account execution paths determined by control
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Figure 3.2: Paths considered by Branch Coverage at 100%.

structures. In Figure 3.1, Statement Coverage is 100 % because all state-
ments are covered but there are still three paths which are not covered: the
three False paths.

– Branch Coverage or Decision Coverage: This metric determines if tests
cover the different branches introduced by the control structures in a sys-
tem. For example, an ’if’ introduces two branches and unit tests must in-
clude the two cases: True and False. In Figure 3.2, the three control struc-
tures introduce six branches and tests must include six cases: True and
False for each control structure. So if tests cover the three True branches
and then the three False branches, Branch Coverage is 100 % but does not
take care of all possible paths in the system: what about the case True, True
and False or False, True and True for example?

– Path Coverage: This metric determine if the tests cover all the possible
paths in a system. Because of the number of possible paths in a system
could be really high (for N conditions there is 2N possible paths) or un-
bounded (if there is an infinite loop), this metric is coupled with the cy-
clomatic complexity. The number of paths to cover increases linearly with
cyclomatic complexity, not exponentially. Generally, the cyclomatic com-
plexity form’s is v(G) = d + 1 where d is the number of binary decision
node in G (G could be a method for example). In Figure 3.3 there are three
conditions so there are 23 = 8 possible paths, but only four paths to cover
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Figure 3.3: Paths considered by Path Coverage at 100%.

with cyclomatic complexity: 3 + 1. A set of paths could be: True-True-
True, False-True-True, True-False-True, True-True-False. The other paths
are not independent paths so they are ignored.

These metrics indicate the level of tests but not the quality of them. They do not
determine if the unit tests are well defined and a number value near 100% does
not indicate that there are no more bugs in the source code.
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3.2 Design Metrics
Design metrics deal with design principles. They quantify over source code entities

to assess whether a source code entity is following a design principle. In particular,
such metrics can be used to track down bad design, which correction could lead to an
overall improvement.

3.2.1 Class Coupling

High quality software design, among many other principles, should obey the prin-
ciple of low coupling. Stevens et al. [SMC74], who first introduced coupling in the
context of structured development techniques, define coupling as “the measure of the
strength of association established by a connection from one module to another”. There-
fore, the stronger the coupling between modules, i.e., the more interrelated they are, the
more difficult these modules are to understand, change, and correct and thus the more
complex the resulting software system.

Excessive coupling indicates the weakness of class encapsulation and may inhibit
reuse. High coupling also indicates that more faults may be introduced due to inter-
class activities. A classic example is the coupling between object classes (CBO), which
considers the number of other classes “used” by this class. High CBO measure for a
class means that it is highly coupled with other classes.

Names Coupling Between Object classes

Acronyms CBO

References [CK94, FP96, Mar05]

Definition Two classes are coupled together if one of them uses the other, i.e., one class
calls a method or accesses an attribute of the other class. Coupling involving
inheritance and methods polymorphically called are taken into account. CBO
for a class is the number of classes to which it is coupled.

Scope Class

Analysis Excessive coupling is detrimental to modular design and prevents reuse. The
more independent a class is, the easier it is to reuse it in another application.
Strong coupling complicates a system, since a module is harder to understand,
change, and correct by itself if it is interrelated with other modules. CBO evalu-
ates efficiency and reusability.

In a previous definition of CBO, coupling related to inheritance was explicitely
excluded from the formula.

CBO only measures direct coupling. Let us consider three classes, A, B and C,
with A coupled to B and B coupled to C. Depending on the case, it can hap-
pen that A depends on C through B. Yet, CBO does not account for the higher
coupling of A in this case.
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CBO is different from Efferent Coupling (which only counts outgoing dependen-
cies) as well as Afferent Coupling (which only counts incoming dependencies).

Names Coupling Factor

Acronyms COF

References [BGE95],[BDW99]

Definition Coupling Factor is a metric defined at program scope and not at class scope.
Coupling Factor is a normalized ratio between the number of client relationships
and the total number of possible client relationships. A client relationship exists
whenever a class references a method or attribute of another class, except if the
client class is a descendant of the target class. Thus, inheritance coupling is
excluded but polymorphically invoked methods are still accounted for.

The formal definition of COF given by Briand et al. [BDW99], for a program
composed of a set TC of classes, is:

COF (TC) =
∑

c∈TC | {d | d ∈ (TC − {c} ∪Ancestors(c)) ∧ uses(c, d)} |
| TC |2 − | TC | −2

∑
c∈TC | Descendants(c) |

uses(c,d) is a predicate which is true whenever class c references a method or
attribute of class d, including polymorphically invoked methods.

Scope Program

Analysis Coupling Factor is a metric which is only defined at program scope and not at
class scope. It makes it difficult to compare with metrics defined at class scope,
which can only be summarized at program level.

The original metric was unclear whether polymorphic methods should be ac-
counted for [BGE95].

Names Message Passing Coupling

Acronyms MPC

References [LH93]

Definition MPC is defined as the “number of send statements defined in a class”. The au-
thors further refine the definition by indicating that calls to class own methods are
excluded from the count, and that only calls from local methods are considered,
excluding calls in inherited methods.
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The formal definition of MPC is:

MPC(c) =
∑

m∈MI(c)

∑
m′∈SIM(m)−MI(c)

NSI(m, m′)

where m belongs to the set of local methods MI and m′ belongs to the set of
methods statically invoked by m (i.e., without taking polymorphism into ac-
count), and excluding local methods (SIM(m) − MI ). NSI(m, m′) is the
number of static invocations from m to m′.

Scope Class

Analysis The authors give the following interpretation: “The number of send statements
sent out from a class may indicate how dependent the implementation of the
local methods is on the methods in other classes.”

MPC does not consider polymorphism as only send statements are accounted
for, not method definitions which could be polymorphically invoked.
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3.2.2 Class Cohesion

Cohesiveness of methods within a class is desirable since it promotes encapsulation
and lack of cohesion implies that classes should probably be split into two or more sub-
classes. For example, although we can have more definitions for the lack of cohesion
metric, they all show the cohesiveness of the class considering different relationships
between the methods of the class. We distinguish class cohesion from package cohe-
sion, since late-binding in object-oriented context may lead to good packages that have
a low-cohesion as for example in the case of framework extensions.

The Lack of Cohesion in Methods (LCOM) metric was one of the first metric to
evaluate cohesion in object-oriented code, based on a similar metric for procedural
cohesion. Different versions of LCOM have been released across the years: some have
been intended to correct and replace previous faulty versions, while others have taken
a different approach to measure cohesion. As a consequence, numbering schemas for
LCOM have diverged across references. Typically, LCOM1 was first called LCOM
before being replaced by another LCOM, which was later renamed as LCOM2.

Most of the LCOM metrics are somehow naive in the intention that they want
to capture: a cohesive class is not a class whose all methods access all the instance
variables even indirectly. Most of the time, a class can have state that is central to the
the domain it represents, then it may have peripheral state that may be used to share
data between computation performed by the methods. This does not mean that the
class should be split. Splitting a class is only possible when two groups of attributes
and methods are not accessed simultaneously.

All LCOM metrics (LCOM1 to LCOM5) give inverse cohesion measures: a high
cohesion is indicated by a low value, and a low cohesion is indicated by a high value.
We followed the numbering of LCOM metrics given by [BDW98], which seems the
most widely accepted.

Original LCOM definitions only consider methods and attributes defined in the
class. Thus inherited methods and attributes are excluded.

Names Lack of Cohesion in Methods

Acronyms LCOM1

References [BDW98]

Definition LCOM1 is the number of pairs of methods in a class which do not reference a
common attribute.

Scope Class

Analysis In Figure 3.4, LCOM1 = 7. The pairs without a common attribute are (m1,
m3), (m1, m4), (m2, m4), (m5, m1), (m5, m2), (m5, m3), (m5, m4).

The definition of this metric is naive and led to a lot of debate against it. In
general it should be avoided as much as possible. In particular, it does not make
sense that all methods of a class directly access all attributes of the class. It can

INRIA-.... 24 Squale -



a1 a2 a3

m1 m2 m3 m4

m5

Figure 3.4: Sample graph for LCOM metrics with methods mi accessing attributes aj

or calling other methods.

give the same measure for classes with very different designs. This metric gives
incorrect results when there are accessor methods.

This metric only considers methods implemented in the class and only refer-
ences to attributes implemented in the class. Inherited methods and attributes are
excluded.

Names Lack of Cohesion in Methods

Acronyms LCOM2

References [BDW98]

Definition For each pair of methods in the class, if they access disjoint sets of instance
variables, then P is increased by one, else Q is increased by one.

– LCOM2 = P −Q , if P > Q,

– LCOM2 = 0 otherwise,

LCOM2 = 0 indicates a cohesive class. LCOM2 > 0 indicates that the class
can be split into two or more classes, since its instance variables belong to dis-
joint sets.

Scope Class
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Analysis In the Figure 3.4, LCOM2 = 4. P is the sum of all pairs of methods which
reference no common attribute thus P = 7 (pairs (m1, m3), (m1, m4), (m2, m4),
(m5, m1), (m5, m2), (m5, m3), (m5, m4)). Q is calculated with other pairs ((m1,
m2), (m2, m3), (m3, m4)), thus Q = 3. The result is P −Q = 4.

The definition of LCOM2 only considers methods implemented in the class and
references to attributes implemented in the class. Inherited methods and at-
tributes are excluded.

It can give the same measure for classes with very different design. LCOM2
may be equals to 0 for many different classes. This metric gives incorrect results
when there are accessors methods. Moreover, LCOM2 is not monotonic because
of "if Q > P , then LCOM2 = 0".

Names Lack of Cohesion in Methods

Acronyms LCOM3

References [BDW98]

Definition LCOM3 is the number of connected components in a graph of methods. Methods
are connected in the graph with methods accessing the same attribute.

Scope Class

Analysis In Figure 3.4, LCOM3 = 2. The first component is (m1, m2, m3, m4) be-
cause these methods are directly or indirectly connected together through some
attributes. The second component is (m5) because the method does not access
any attribute and thus is not connected.

This metric only considers methods implemented in the class and only refer-
ences to attributes implemented in the class. Inherited methods and attributes are
excluded.

This metric gives incorrect results when there are accessor methods because only
methods directly connected with attributes are considered.

Constructors are a problem, because of indirect connections with attributes. They
create indirect connections between methods which use different attributes, and
increase cohesion, which is not real.

Names Lack of Cohesion in Methods

Acronyms LCOM4

References [BDW98]

INRIA-.... 26 Squale -



Definition LCOM4 is the number of connected components in a graph of methods. Methods
are connected in the graph with methods accessing the same attribute or calling
them. LCOM4 improves upon LCOM3 by taking into account the transitive call
graph.

– LCOM4 = 1 indicates a cohesive class.

– LCOM4 ≥ 2 indicates a problem. The class should be split into smaller
classes.

– LCOM4 = 0 happens when there are no methods in a class.

Scope Class

Analysis In the Figure 3.4, LCOM4 = 1. The only component is (m1, m2, m3, m4, m5)
because these methods are directly or indirectly connected to the same collection
of attributes.

If there are 2 or more components, the class could be split into smaller classes,
each one encapsulating a connected component.

Names Lack of Cohesion in Methods

Acronyms LCOM5,LCOM*

References [BDW98]

Definition

LCOM5 =
NOM −

P
m∈M NOAcc(m)

NOA

NOM − 1
where M is the set of methods of the class, NOM the number of methods, NOA
the number of attributes, and NOAcc(m) is the number of attributes of the class
accessed by method m.

Scope Class

Analysis In Figure 3.4, LCOM5 = 3
4 , because NOM = 5, NOA = 3,

∑
NOAcc = 6.

A common acronym for LCOM5 is LCOM*.

LCOM5 varies in the range [0,1]. It is normalized compared to others LCOM or
TCC and LCC which have no upper limit of the values measured. But LCOM5
can return a measure up to two when there is for example only two methods and
no attribute accesses.

This metric considers that each method should access all attributes in a com-
pletely cohesive class, which is not a good design.
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Names Tight Class Cohesion

Acronyms TCC

References [BK95, BDW98]

Definition TCC is the normalized ratio between the number of methods directly connected
with other methods through an instance variable and the total number of possible
connections between methods.

A direct connection between two methods exists if both access the same instance
variable directly or indirectly through a method call (see Figure 3.5).

– NP = N×(N−1)
2 : maximum number of possible connections where N is

the number of visible methods

– NDC: number of direct connections

– TCC = NDC
NP

TCC takes its value in the range [0, 1].

For TCC only visible methods are considered, i.e., they are not private or imple-
ment an interface or handle an event. Constructors and destructors are ignored.

Scope Class

Analysis TCC measures a strict degree of connectivity between visible methods of a class.
TCC satisfies all cohesion properties defined in [BDW98].

The higher TCC is, the more cohesive the class is. According to the authors,
TCC < 0.5 points to a non-cohesive class. TCC = LCC = 1 is a maximally
cohesive class: all methods are connected.

Constructors are a problem, because of indirect connections with attributes. They
create indirect connections between methods which use different attributes, and
increase cohesion, which is not real.

Names Loose Class Cohesion

Acronyms LCC

References [BK95, BDW98]

Definition LCC is the normalized ratio between the number of methods directly or indirectly
connected with other methods through an instance variable and the total number
of possible connections between methods.

There is an indirect connection between two methods if there is a path of direct
connections between them. It is defined using the transitive closure of the direct
connection graph used for TCC (see Figure 3.5).
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through a/b

indirect connection

Figure 3.5: In this example depicting five methods and two attributes of a class, we
have TCC = 4

10 (counting red and blue lines) and LCC = 6
10 (adding purple lines to

the count).

– NP = N×(N−1)
2 : maximum number of possible connections where N is

the number of visible methods

– NIC: number of indirect connections

– LCC = NDC+NIC
NP

– By definition, LCC ≥ TCC

LCC takes its value in the range [0, 1].

For LCC only visible methods are considered, i.e., they are not private or imple-
ment an interface or handle an event. Constructors and destructors are ignored.

Scope Class

Analysis LCC measures an overall degree of connectivity between visible methods of a
class. LCC satisfies all cohesion properties defined in [BDW98].

The higher LCC is, the more cohesive the class is. According to the authors,
LCC < 0.5 points to a non-cohesive class. LCC = 0.8 is considered “quite co-
hesive”. TCC = LCC indicates a class with only direct connections. TCC =
LCC = 1 is a maximally cohesive class: all methods are connected.

Constructors are a problem, because of indirect connections with attributes. They
create indirect connections between methods which use different attributes, and
increase cohesion, which is not real.

Squale - 29 INRIA-...



3.2.3 Package Architecture

Package Design Principles. R.C. Martin discussed principles of architecture and
package design in [Mar96] and [Mar00]. He proposes several principles:

• Release / Reuse Equivalency principle (REP): The granule of reuse is the granule
of release. A good package should contain classes that are reusable together.

• Common Reuse Principle (CRP): Classes that are not reused together should not
be grouped together.

• Common Closure Principle (CCP): Classes that change together, belong together.
To minimize the number of packages that are changed in a release cycle, a pack-
age should contain classes that change together.

• Acyclic Dependencies Principle (ADP): The dependencies betwen packages must
not form cycles.

• Stable Dependencies Principle (SDP): Depend in the direction of stability. The
stability is related to the amount of work required to make a change on it. Con-
sequently, it is related to the package size and its complexity, but also to the
number of packages wich depend on it. So, a package with lots of incoming de-
pendencies from others packages is stable (it is responsible to those packages);
and a packages with not any incoming dependency is considered as independent
and unstable.

• Stable Abstractions Principle (SAP): Stable packages should be abstract pack-
ages. To improve the flexibility of applications, unstable packages should be
easy to change, and stable packages should be easy to extend, consequently they
should be highly abstract.

Some metrics have been built to assess such principles: For example, the Abstract-
ness and Instability metrics are used to check SAP.

Martin Package Metrics. The following metrics defined by Martin [Mar97] aim at
characterizing good design in packages along the SDP and SAP principles. However,
the measurements provided by the metrics are difficult to interpret.

Names Efferent Coupling (module)

Acronyms Ce

References [Mar05]

Definition Efferent coupling for a module is the number of modules it depends upon (out-
going dependencies, fan-out, Figure 3.6).

Scope Class, Package
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Analysis In [Mar00], efferent coupling for a package was defined as the number of classes
outside the package that classes inside depend upon. In [Mar97], efferent cou-
pling for a package was defined as the number of classes in the package which
depend upon classes external to the package.

The current definition is generalized with respect to the concept of module,
where a module is always a class or always a package.

Names Afferent Coupling (module)

Acronyms Ca

References [Mar05]

Definition Afferent coupling for a module is the number of modules that depend upon this
module (incoming dependencies, fan-in, Figure 3.6).

Scope Class, Package

Analysis In [Mar97], afferent coupling for a package was defined as the number of classes
external to the package which depend upon classes in the package.

Names Abstractness

Acronyms A

References [Mar97]

Definition Abstractness is the ratio between the number of abstract classes and the total
number of classes in a package, in the range [0, 1]. 0 means the package is fully
concrete, 1 it is fully abstract.

Scope Package

Analysis This metric can not be analyzed in isolation. In any system, some packages
should be abstract while other should be concrete.

Names Instability

Acronyms I

References [Mar97]
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Figure 3.6: Each module is represented by a box with enclosed squares. It is either a
class enclosing methods and attributes, or a package enclosing classes. Efferent cou-
pling is the number of red modules (Ca = 2); afferent coupling is the number of blue
modules (Ce = 2).

Definition I = Ce(P )
Ce(P )+Ca(P ) , in the range [0, 1]. 0 means package is maximally stable (i.e.,

no dependency to other packages and can not change without big consequences),
1 means it is unstable.

This metric is used to assess the Stable Dependencies Principle (SDP): according
to Martin [Mar97], a package should only depends on packages which are more
stable than itself, i.e. it should have a higher I value than any of its dependency.
The metric only gives a raw value to be used while checking this rule.

Scope Package

Analysis Instability is not a measure of the possibility of internal changes in the package,
but of the potential impact of a change related to the package. A maximally sta-
ble package can still change internally but should not as it will have an impact on
dependent packages. An unstable package can change internally without conse-
quences on other packages. Intermediate values, in the range ]0, 1[], are difficult
to interpret.

A better way to understand Instability is as a Responsible/Independant couple.
A stable package (I = 0) is independant and should be responsible because
of possible incoming dependencies. An unstable package is dependant of other
packages and not responsible for other packages.

The stability concept, understood as sensitivity to change, should be transitively
defined: a package can only be stable if its dependencies are themselves stable.
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Names Distance

Acronyms D

References [Mar97]

Definition D = A+I−1√
2

or (normalised) D′ = A + I − 1. A package should be balanced
between abstractness and instability, i.e., somewhere between abstract and stable
or concrete and unstable. This rule defines the main sequence by the equation
A + I − 1 = 0. D is the distance to the main sequence.

This metric is used to assess the Stable Abstractions Principle (SAP): stable
packages should also be abstract packages (A = 1 and I = 0) while unstable
packages should be concrete (A = 0 and I = 1).

Scope Package

Analysis This metric assumes a one-to-one inverse correlation between Abstractness and
Instability to assert the good design of a package. However, such a correlation
seems uneasy given the difference in data nature on which each metric is com-
puted. To our knowledge, no large scale empirical study has been performed to
confirm this assumption.

This metric is sensitive to extreme cases. For example, a package with only
concrete classes (A = 0) but without outgoing dependencies (I = 0) would
have a distance D′ = −1. Yet this package does not necessarily exhibit a bad
design.
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3.3 New Metrics and Missing Aspects
Some of the work under this section are still under review for publications. They

have been withdrawn from the current version of this document and will be reintro-
duced once accepted.

3.3.1 Package Cohesion

There is no agreement on what makes a package cohesive. Actually, some authors
[Mi1, Pon06]) think that cohesion for a package cannot be determined from the internal
structure of the package alone: one must consider the context, i.e., what the package
uses and how it is used. A set of cohesive classes does not necessarily make a package
cohesive.

In addition, class-level cohesion metrics do not necessarily translate at the package
level. For example, a package where classes would not share any relationships between
them, but would inherit from a common external superclass, can be a proper package.

Ponisio [Pon06] introduces the idea of using the context of a package, i.e., its de-
pendencies, rather than simply its internal structure, to characterize a package cohe-
sion. Classes can belong together in a cohesive package even without a dependency
between them, because they are accessed by the same external classes. They propose
the Contextual Package Cohesion metric to characterize such a cohesion. In particu-
lar, the Contextual Package Cohesion metric can be used to assess the Common Reuse
Principle.

Names Contextual Package Cohesion. Locality

Acronyms CPC

References [Pon06]

Definition The CPC metric is based on the concept of similarity between pairs of objects.
The more client packages use the same classes in the package, the more cohesive
the package is (see Figure 3.7).

Contextual Package Cohesion is the ratio between the number of pairs of classes
which are referenced by a common client package, and the total number of pos-
sible pairs of classes in a package interface. The package interface includes all
classes which external classes depend upon. With CPC, a cohesive package is
one where classes in the package interface are depended upon by a common set
of packages.

– classes(P ) retrieve the set of classes defined in package P .

– I = {c|c ∈ P∧clientClasses(c)−classes(P ) 6= ∅}: interface of package
P , i.e., classes which external classes depend upon.

– NP = |I|×(|I|−1)
2 : maximum number of possible pairs formed by classes

of the package interface.
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Figure 3.7: Classes A, B, C, D constitute the interface of package P. Classes A and
B are both referenced together by packages Q and R, making this part of P cohesive.
On the contrary, classes C and D are only used by package S and thus are misplaced
(Locality). However, only D can be moved freely, as C also references an internal class
of package P (Happiness). In this example CPC = 1

6 . Moving class D would increase
cohesion up to 1

3 .

– f(a, b) = 1
if (clientPackages(a)− P ) ∩ (clientPackages(b)− P ) 6= ∅,

f(a, b) = 0 otherwise

– CPC =
P

a,b∈I f(a,b)

NP

Scope Package

Analysis CPC focuses on classes at the interface of the package and external clients and
normalizes its measure in the range [0, 1].

The original definition of the client relationship by [Pon06] was unsound be-
cause it mixes classes and packages. We refine those definition with two dis-
tinct functions, clientClasses(c) which retrieve classes referencing class c, and
clientPackages(c) which retrieve packages referencing class c. clientClasses
can include other classes of P as well as clientPackages can include P itself
so those internal references must be excluded from the relationships.

Names Locality

Acronyms

References [Pon06]
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Definition Locality for a class is described as Contextual Package Cohesion evaluated us-
ing reference dependencies. However, the current formula for CPC cannot be
applied at class level. Locality for a class can be roughly described as how well
a class matches with other classes of its package in terms of client usage.

Scope Class

Analysis Locality could be used to refine CPC interpretation by pointing to classes which
are misplaced in the package because they have different external clients than
other package classes. Yet no known definition exists for this metric.

Names Happiness

Acronyms

References [Pon06]

Definition Happiness for a class measures how well a class fits in a package. It is based
on the class coupling with other classes in the package. Although no formal
definition is given, a tentative definition woudl be afferent coupling of a class
within its package, i.e., the number of client classes inside its package.

Scope Class

Analysis Happiness is a metric used to counterbalance Locality in package refactoring.
Locality points to classes which are misplaced in the package because they have
different external clients. However a misplaced class which also have internal
dependencies (hence high Happiness measure) should not necessarily be moved.
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Chapter4. Conclusion
This document presents a selection of metrics that can be useful to characterize object-
oriented systems. They range from simple mere measurements to more sophisticated
metrics. The goal of this document is not to have a long catalog but to select some
metrics, either because they were commonly used, debated (LCOM), or because they
represent important aspects of an OO system in terms of its quality (package cohesion).
The current version of this document does not include some more recent work that is
under publication. Once the work will be public a new version will be made available.
The current catalog of metrics is intended to be used to define practices in the Squale
four level quality model. The second level called practices are smart aggregation of
metrics and will the focus of the deliverable 1.3.
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