Workpackages: 2.1 & 2.2
Technical and Economical Model

Technical Model for Remediation

June 28, 2009

Abstract

Once applied on a system, the Squale quality model will identified practices
which are not optimal. This can be for a single component, a group of component
or a complete system for example when rule checking such as code formatting
not following certain rules. Now several questions have to be answered: (1)
what is the cost of modifying a component? (2) how to improve the quality
of the system and (3) what is the return on investment that we can obtain if
one decide to improve the quality of a software system. This document is the
intermediate version of two workpackages which should address these questions
separately. The third question is not approached in this document.

This deliverable is available as a free download.

Copyright (© 2009, 2008 by S. Ducasse, S. Denier, F. Balmas, A. Bergel, J. Laval, K. Mordal-
Manet, F. Bellingard.

The contents of this deliverable are protected under Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 Unported license.
You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distribute the re-
sulting work only under the same, similar or a compatible license.

e For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: creativecommons.org/
licenses/by-sa/3.0/

e Any of the above conditions can be waived if you get permission from the copyright
holder.

e Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

First Edition, March, 2009.

Workpackage: 2.1 & 2.2 (intermediate version)
Title: Technical and Economical Model
Revision: 0.1

Authors: INRIA, Paris 8, Qualixo

Planning
e Delivery Date: June 2010

e First Version: March 2009

Contents

1 Objectives and Technological Challenges
1.1 Technological Challenges

1.2 State of the Art . .

1.3 Aspects of Remediation Plans
1.3.1 Remediation tasks
1.3.2 Organisational aspects of remediation
1.3.3 Conclusion: objectives for remediation plan

2 Current remediation approach in Squale
2.1 Mixed priority-cost strategy

2.2 Limitations

3 Prospective Remediation Models

3.1 Basic strategies . .
3.2 Risk model

3.3 Profitability model

4 Conclusion

15
15
16
16

18

Chapter 1

Objectives and Technological
Challenges

The objectives of these workpackages is a model definition for (i) assessing the
cost of software modification, (ii) identifying remediation actions according to
an analysis conducted according to the previous workpackage (WP1.3), and (iii)
analyzing return on investment for quality.

1.1 Technological Challenges

While the previous workpackages focused on the quality model, i.e., assessing
the quality bottom-up, this workpackage focuses on working out solutions to
correct quality problems. This challenge can be decomposed in two aspects,
technical and economical, which are both important when the decision to im-
prove or abandon systems has to be made.

The technical aspect is of primary importance for the development team.
Once a quality defect is assessed, the team must figure a plan to resolve the
defects and improve the quality. Such a remediation plan takes into account the
defective components as well as the violated practices. However, such a plan
must also be effective and provide as much as improvements at the lowest cost.

Different team cultures can come up with different ways to build a plan and
split it in tasks between team members. It can involve technical architects,
team leaders, and developers. The strategy to build the remediation plan is to
be customized on a case-by-case basis.

This work package is structured into two sub work packages:

e Creation and modification cost estimate

e Quality improvement cost (action plan)

1.2 State of the Art

Identifying the changes and computing their cost in a component is definitively
a challenge that deserves an analysis of existing practices in several fields. This
section will contain a short state of the art on the different domains which have
dealt with component creation and modification estimation. We identified the
following areas of potential investigation:

e Cost estimation model such as Cocomo, even if they do not take into
account the potential of changes [Kem87].

e Refactorings (refactorings are behavior preserving operations [Rob99, FBBT99)|)
and maintenance actions [MT04, BMZ*05].

e Prediction models for maintenance effort [ME98, BB99, JJ97, Put].

e Change impact model [BA9G6].

1.3 Aspects of Remediation Plans

Remediation plans have multiple characteristics which govern their scope and
application in any company. The quality process aiming at remediation should
be aware of such characteristics to make informed decisions. We discuss two
aspects of such plans: the characteristics of tasks tackled by the plan, and the
organizational aspect of a plan in development teams and during development
process.

The following terms define a common vocabulary for description of remedi-
ation plans.

Transgression: a single failed instance of a practice i.e., either a component
or a rule transgression.

Remediation task: descriptions of actions to be taken to resolve one trans-
gression of a practice.

Remediation plan: ordered list of remediation tasks, from top priority to low-
est priority.

Correction coefficient: coefficient characterizing the work required to apply
one remediation task.

Workload: work required to resolve all transgressions of a single practice.

1.3.1 Remediation tasks

A remediation task is the conceptual unit describing the actions to be taken
to resolve one transgression, i.e., a failed practice on one component (or one
rule transgression). The range and effort implied by a task vary greatly. For

Practice Scope Scope of remediation
Audit Project Selection of top priority components
identified by the audit
Metric Component Component and related
Model (package, class, method. . .)
Test
Rule Rule Component enclosing transgression
transgression

Table 1.1: Scope of practices and remediation

example, one task can target a single class which violates the coupling practice,
while another can target all methods which violate naming practice.

We identify three intrinsic characteristics to assess the work required by a
remediation task:

e scope of practice and remediation;
e degree of automation of the remediation task;
e expertise required for remediation (technology-wise).

Four more characteristics are contextual, depending on the project and com-
pany standards:

e code organization and ownership;

e criticality of practice, depending on company standards and current stage
in project lifecycle (for example, test practices are stressed in pre-release
stage);

e criticality of component (as ruled by development team);

e characteristics of component (complexity, coupling, size...).

Eventually, the number of transgressions sets the workload to resolve all
transgressions of the practice. We now discuss each characteristic in more de-
tails.

Scope of practice and remediation. This characteristic assesses what is
the target of remediation in the project. Indeed, three kinds of practice identify
three different scopes of transgressions. Then, remediation of those transgres-
sions happens at a related scope as described in Table 1.1.

An audit targets the whole project and do not singularize components by
construction. However, the audit expert may recommend some specific compo-
nents which should have top priority in remediation plan. Most practices target

a single component. The remediation for the practice can then target the single
component, but may affect related components in some cases. Practices based
on rule checking identify rule transgressions, which can be multiple for a single
component. However, the rule of thumb is, for a single component, to collect
all transgressions of a practice and correct them at once.

Automation of remediation. Some remediation tasks can be automated
with few inputs from the developer. This is the case for example of practices
targeting conformance to some coding standards. In those cases, it is better
to target all transgressions at once across components. Indeed, the value of
conformance comes from the high number of components following standards,
promoting homogeneity and making subsequent actions easier.

Technological expertise. While standard-based practices are easy to follow,
other practices require an expert in their field to be dealt with diligently. For
example, tasks related to architecture and design, or security require an expert
in their respective field.

Code organization and ownership. The remediation plan needs to take
into account code organization in the project as well as code ownership. Some
components may be out of bounds. As much as technological expertise is
needed, expertise about the target components and their history of develop-
ment is needed to deal efficiently with some transgressions.

Criticality of practice. Not all practices are equally important during the
different stages of development lifecycle. For example, testing practices should
be stressed in testing stage. Moreover, due to specific requirements, project
manager can stress some practices such as portability. This plays on the priority
of the practice in remediation plans.

Criticality of component. Knowledge of project internals can lead to stress
actions on components which are central in the current stage of development.
On the other hand, some faulty components can be declared out of bounds if
they work otherwise with no evolution planned.

Characteristics of component. Depending on the practice, characteristics
such as size, complexity, coupling, can have a deep impact on the correction
required by a transgression. Some practices state explicitly such a correlation:
for example, providing more tests for complex methods.

1.3.2 Organisational aspects of remediation

Each company has its own policy of managing quality and applying remediation
at different levels in development teams, from the individual developer to the
technical manager. Quality and remediation might be used by each developer

to assess its own work and correct it. The technical manager can use it to assess
the health of its projects and target more critical components or practices,
depending on the life-cycle of the project. Quality team can use it to assess the
respect of standards in different projects and come with new recommandations.

Those different scopes of quality and remediation are of equal importance
to build an efficient software quality process:

e The developer can manage its own work on daily basis and do not feel the
software quality process as a burden. It is part of a self-applied discipline’.

e The technical manager can use this tool to assess the situation and direct
the effort.

e The quality team tailors the model to the needs and standards of the
company. This is best done in iterative manner by analyzing previous
model instances.

1.3.3 Conclusion: objectives for remediation plan

Based on the previous aspects, development teams may have two objectives to
remedy software quality:

e achieve the best profitability in quality process i.e., the best compromise
between quality raise and remediation costs.

e achieve a significant reduction of risks by targeting critical components
and practices.

Each objective relies on different models to be achieved. The following sec-
tions describe such models.

n current instances of Squale model, some programmers consider the process as a game,
trying to achieve the best marks.

Chapter 2

Current remediation
approach in Squale

The purpose of the current model is to first reduce risks by targeting worst
marked practices then achieve some profitability by prioritizing remediation
tasks with the lowest work to do. This model is practice-oriented, in that
it only prioritizes the practices to be corrected, independently of the touched
components. This model is tailored towards the developer, which can use hints
from the remediation plan to perform quality tasks on a daily basis.

2.1 Mixed priority-cost strategy

The current strategy to prioritize remediation tasks follows four principles:
1. practices with lowest marks should have higher priority;

2. components which fail a practice should all be corrected before making
improvement to others;

3. some practices are easier to correct than others;

4. the workload necessary to correct a practice is a function of the practice
itself and the number of transgressions of the practice.

Each principle is embodied by different steps and metrics of the algorithm
for planning remediation illustrated by Figure 2.1.

Practice prioritization based on marks. The Squale model defines three
practice levels: “refused”, “accepted with reserve” and “accepted”. Depending on
its global mark, each practice belongs to one of these levels. “Refused” practices
have priority in the remediation plan, next are “accepted with reserve” practices,
then “accepted” practices can be scheduled for improvement.

10

Step 1
Practice prioritization based on marks

Project
Practice_3:1 ->refused

Practice_1: 1.6 -> accepted with reserve
Practice_2: 2.5 -> accepted

Step 2
Component selection per practice

refused

Practice_3

Practice_4

accepted with reserve

Practice_1 C9:1
C12:1.8

C16:1.3
Practice_5

Step 3
Correction coefficient per practice

P1Coeff: 3.8

Workld (Pi) = Pi.Coeff * #C
where C = components of the set
or transgressions

Step 4
Workload per practice

Step 5
Strategy of remediation

Refused: (Workld(Pi)< Workld(Pj) sort
Accepted/reserve: (Workld(Pi)< Workld(Pj) sort
Accepted: (Workld(Pi)< Workld(Pj) sort

Figure 2.1: Steps

11

Mark ‘ Level

[0,1] Refused
11,2] | Accepted with reserve
12,3 Accepted

Component selection per practice. Given the level of a practice, only
components which are ranked at the same level or below should appear in the
remediation plan. For an “accepted with reserve” practice, only “accepted with
reserve” components and “refused” components will be dealt with. “Accepted”
components can only be interesting for improvement, not remediation. However,
for rule-based practices, all transgressing components should be selected for
remediation.

Correction coefficient per practice. A correction coefficient is assigned to
each practice. It asserts the relative effort to correct a single transgression of the
practice, compared to other practices. It is a constant and as such is independent
of the transgressing component. This takes into account, for example, that a
transgression of formatting standards is easier to correct than a design issue due
to coupling. Table 2.1 gives an example of correction coefficients for practices
customized for Java projects.

Workload per practice. Given that the correction coefficient for a practice is
constant, the workload to correct all transgressions of the practice is defined by
the product of the coefficient by the number of transgressions. For metrics-based
practices, the number of transgressions is the number of selected components.
For rule-based practices, this is directly the number of transgressions detected
by the rule in selected components.

Strategy of remediation. The idea is to target each level of practices by
decreasing risk (from “refused” to “accepted”) and, for each level, to begin with
practices with the lowest workload.

cluster practices by level = {refused, accepted with
reserve , accepted };
for each level
for each practice
select components for remediation;
compute practice workload as coefficient (practice)
x number of transgressions(practice);
sort level by workload;
done;
done;
append levels;

12

Practice Name Unitary Effort
Stability abstractness level 200
Afferent coupling 150
Efferent coupling 100
Swiss army knife 35
Copy paste 30
Spaghetti code 30
Inheritance depth 20
Lack of cohesion in method 20
Method size 20
Number of methods 20
Depend on child 20
Layer respect 40
Programming standard 15
Dependency cycle 10
Documentation standard 6
Naming standard 4
Formatting standard 1
Documentation 10

Table 2.1: Current effort ponderation for different practices

2.2 Limitations

There are multiple limitations on the described strategy:

1. The coeflicient is a constant, meaning that the correction cost does not
take into account characteristics of the component which may hinder the
remediation. For the test coverage practice, the effort to write tests for

complex methods (which is required by the practice) gets harder with the
complexity itself.

2. Some practices are contradictory, so correcting a practice on a component
can degrade other practices.

3. Although this strategy prioritizes practices by criticality and effort, it
always targets the full system: it can not predict where and when the

quality (marks) will be most improved. Consequently, the workload might
not, be optimal in the end.

e There is no parameter limiting the cost of the remediation plan. The

plan targets a full remediation of the system without considering the
total workload.

e There is no estimation of the new practice mark, as we only give a
list of corrections without estimating the improvement on the practice

13

level (and if one follows the action plan, final notation would be very
good, but perhaps the effort is not optimal).

4. Components involved in multiple transgressions are not detected, which
means they would be passed over and over.

14

Chapter 3

Prospective Remediation
Models

As stated in Section 1.3.3, a remediation plan is built with respect to a global
quality objective, such as profitability or risk reduction. We discuss in the
following sections possible strategies to build remediation plan for the different
objectives.

Contrary to the mixed strategy which only consider the priority of practices,
the models below focus more on components which violate multiple practices,
offering to correct most practices at once for a single component. Then the
remediation plan describes sequences of tasks focused on the same components.
When tackling such a sequence, the programmer will gradually increase or re-
fresh its knowledge of the component, facilitating further correction.

3.1 Basic strategies

Independently of higher level criteria such as cost, profitability, or criticality,
two basic strategies are always available when tackling a faulty practice:

e slightly improve marks for many components;
e improve marks of worst components.

Weighting applied by the global practice function (see WP1.3) dictates the
best strategy: hard weighting pushes stress on bad marks, eliciting the remedia-
tion of worst components; soft weighting leverages all marks, making a slight in-
crease in many components more interesting. It also depends on the complexity
and automation of practice remediation. As noted in Section 1.3.1, rule-based
practices for conformance should be corrected by batch of components, while
practices requiring more expertise are more likely to be tackled by focusing on
few bad components.

15

3.2 Risk model

The criticality model targets the reduction of risks with a focus on critical
practices and critical components. Both sets of critical practices and critical
components can be tailored by the development team following its current devel-
opment goal. The model identifies components at risk i.e., critical components
most involved in transgressing practices, especially critical practices.

The strategy can be defined in two steps:

1. manually identify critical practices and critical components by giving crit-
icality coefficients (done by development team);

2. compute (then sort) component risk as criticality coefficient of component
X criticality coefficient of violated practices;

or

2. run HITS-like algorithm to identify components at risk ¢.e., critical com-
ponents which violates multiple (critical) practices.

3.3 Profitability model

The profitability model is an evolution of the mixed priority-cost model, aiming
at optimizing the ratio of quality gains versus workload of remediation. To
be rationale and efficient, such a model should assess precisely two types of
characteristics:

e correction coefficients of remediation based on practice and component
characteristics (such as complexity of components) instead of a constant
per practice;

e estimated, or scheduled, gain of quality.

Quality objective. The model does not stick with the three-level clustering
in “refused”, “accepted with reserve”, and “accepted” practices. Instead, the
estimated gain of quality prioritizes a quantitative objective to reach, which
allows one to control allocated resources (instead of targeting a full remediation
of the system).

For example, one could fix as objectives that a practice global mark should
be above 1.2 and that any component mark for this practice should be above
0.8. Correction coefficients should be expressed in terms of gain of quality: how
much work has to be done on the component to get a 0.1 increase in quality
mark.

16

Strategy. The model requires as inputs marks to be achieved for each practice.
For each practice, a set of candidate components is selected and a profitability
mark is computed for each component (as the work necessary to achieve its
goal mark, the lower the better). Each component receives a global profitability
mark, depending on the practices it is involved. Components are sorted in the
remediation plan from most profitable to the less profitable.

for each practice
select components;
compute profitability of each component as work to
achieve a goal mark;
done;
for each component
compute component total profitability across
practices;
done;
sort components by total profitability;

17

Chapter 4

Conclusion

The first conclusion of our analysis is that the meta model describing practices
should be enriched to enable the generation of remediation plan.

e Degree of automation in practice correction i.e., whether the practice can
be automatically and easily fixed or whether it requires an audit.

e Criticality of the practice with respect to the company standards and
project current requirements.

e Skill-level required by practice remediation (whether an expert is required
or not).

18

Bibliography

[BA96]

[BB99)

[BMZ+05]

[FBB+99)

17397

[Kem87|

[ME9S]

[MT04]

[Put]

[Rob99]

S. A Bohner and R.S. Arnold. Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

PerOlof Bengtsson and Jan Bosch. Architecture level prediction of
software maintenance. In Furopean Conference on Software Main-
tenance and Reengineering (CSMR’99), pages 139-147, 1999.

Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Giin-
ter Kniesel. Towards a taxonomy of software change. Journal on

Software Maintenance and Fvolution: Research and Practice, pages
309-332, 2005.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

Henry J.E. and Cain J.P. A quantitative comparison of perfective
and corrective software maintenance. Journal of Software Mainte-
nance: Research and Practice, page 281, 1997.

Chris F. Kemerer. An empirical validation of software cost estima-
tion models. Communications of the ACM, 1987.

J.C. Munson and S.G. Elbaum. Code churn: A measure for estimat-
ing the impact of code change. In ICSM’98, pages 24-34, 1998.

Tom Mens and Tom Tourwé. A survey of software refactoring. Trans-
actions on Software Engineering, 30(2):126-138, 2004.

L. H. Putnam. Example of and early sizing, cost and schedule esti-
mate for an application software system. In Proceedings of COMP-
SAC78.

Donald Bradley Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois, 1999.

19

