
Technical and Economical Model

Modèle technique et économique

Workpackage: 2.1

September 9, 2010

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

This deliverable is available as a free download.

Copyright c© 2010, 2009 by F. Balmas, F. Bellingard, S. Denier, S. Ducasse, J. Laval, K. Mordal-Manet.

The contents of this deliverable are protected under Creative Commons Attribution-Noncommercial-ShareAlike
3.0 Unported license.
You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this web page: creativecommons.org/licenses/by-sa/
3.0/

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of
the Legal Code (the full license):
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Second Edition, October, 2010.

2

creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Workpackage: 2.1

Title: Model and Definition, First Version

Revision: 1.0

Authors: INRIA RMoD, Paqtigo, Qualixo

Planning

• Delivery Date: 15 October 2010

• First Version: 29 March 2010

3

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Contents

1 Introduction 5
1.1 Objective . 5
1.2 Challenges . 6

2 Model for remediation effort 8
2.1 Remediation cost . 8
2.2 Practices with computed remediation 8
2.3 Practices without computed remediation 12

3 Unit Remediation Change Cost 14
3.1 Elementary costs. 14
3.2 Code Change Costs . 14

4

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

1. Introduction
1.1 Objective

The objective of this workpackage is to define a model for (i) assessing the effort
of software modification, (ii) identifying healing actions following practices from the
Squale quality model defined in the previous workpackage (WP1.3). It defines the
input for the next workpackage which is about planning actions once their effort is
characterized.

The key constraints of this work are:

• The remediation effort should be expressed in the context of a quality model. It
should act as a quantification of the work to obtain a better (or good) quality of
the entity under analysis.

• The remediation should be based on practices as described in the workpackage
1.3.

Scope. The Squale quality model presented in workpackage 1.3 distinguishes between
five kinds of practices: metric, model, rules checking, human, and dynamic-based prac-
tices. This distinction is based on different procedures for assessment:

• the metric analysis uses metrics computed on the static structure of the source
code;

• the model analysis uses metrics computed on abstract specifications such as
UML diagrams and specification documents;

• the "rules checking" analysis relies on rule checking engines which compute rule
transgressions at the level of the complete project;

• the human analysis implies project-wide audits made by experts. Audits cover
project specifications and process but also any non automatically computable
property;

• the dynamic analysis relies on measuring dynamic aspects of the software system
through tests.

The different kinds of practices also imply different kinds of healing actions and,
consequently, different kinds of assessment for needed modifications and their costs.

• metric-based practices involve assessment and modifications of source code;

• model-based practices involve assessment and modifications of models;

• rules checking practices involve modifications of source code to conform with
the rules;

5

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

• human-based practices involve applications of recommendations by experts in
the project;

• dynamic-based practices involve assessment and modification of test suites.

In this report, we focus on metric-based practices because they can be computed
automatically yet each must be resolved in custom ways.

1.2 Challenges
In the context of the Squale quality model, two questions drive remediation effort

assessment:

1. Which context-sensitive characteristics of the system impact the remediation ef-
fort?

2. What goal should attain the healing action?

The context assesses the component targeted by the practice as well as linked com-
ponents which may be touched by the actions. Depending on the practice, two param-
eters are helpful to refine the context:

1. complexity i.e., how easy is it to change components according to the action (for
example, a complex method is harder to split than a simple method);

2. impact i.e., how many components are to be touched by the action (for example,
changing a method might require updating call sites of the method). Even if
source code refactoring engines ensure behavior preservation, this is still relevant
when tests should be rerun.

The goal represents a level of quality to be reached. In the context of Squale,
quality is given by scores so it is natural that goals are simply score goal to be reached.
A score above 2 is satisfactory, between 1 and 2 should be raised whenever possible,
below 1 should be raised in top priority.

In the end, remediation is a compromise between goals to be achieved and resources
available which allows one to respond to the effort required by the remediation. Work
package 2.2 builds on this work package to propose different strategies for achieving
this compromise.

The formula to compute a remediation effort for a practice should take into account
the metrics used to compute the practice score. Then quality scores and efforts are
correlated. It is an important property which allows a remediation effort to measure the
level of work necessary to achieve a goal score.

However, practice formulae are not necessarily written to assess the complexity
of a situation, but merely detect problems. Take for example the practice Number of
methods which is computed using NOM and v(G) metrics. The remediation action is
to split the class so that methods are dispatched between smaller classes. However, the
difficulty of splitting classes might be better assessed using cohesion metrics (the more
cohesive a class is, the more difficult it is to split it) than using NOM or v(G).

6

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

In addition, we can not compute the full effort of improving a practice since it often
relies on design decisions. Splitting a class (so as to improve a practice such as Number
of methods) requires thinking ahead about the number of new classes to create and their
interaction. Instead, the remediation cost is a tentative cost given to assess the effort to
reach a quality goal.

7

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

2. Model for remediation effort
2.1 Remediation cost

The remediation cost (notation W) for a practice on a component is based on the
empirical formulae of practices: the objective is to give a cost assessment, based on the
complexity of the case and the impact of the corrective measures. It typically involves
an estimated number of corrections necessary and the weight of the refactoring actions.

Four kinds of parameters are used to compute remediation:

• Complexity: assessment of the characteristics of the faulty component which
may hamper remediation;

• Impact: number of components touched by the remediation (to be fixed or to be
modified as part of the solution);

• Goal score: quality score expected after remediation;

• Unit Remediation Cost (URC): unit factor of effort which depends on the changes
to apply (see Section 3).

Notice that the four parameters are not necessarily independent of each other. For
example, assessing the complexity of the case depends on the goal score. The higher
the goal score is, the more complex it can be to solve the case.

Since practices often identify situations where design was lacking and that such
situation may be due several factors, capturing a cost for fixing the problems is defini-
tively a challenge. In particular multiple solutions may exist and it is difficult to capture
the tradeoffs and the knowledge that an expert might apply. Therefore the remediation
cost is by essence an estimate that should be confirmed and refined by an expert.

We classify practices on two categories:

• Practices with computed remediation: the remediation can be automatically com-
puted.

• Practices without computed remediation: they represent informational number.
It is not possible to propose an automated solution for remediation.

2.2 Practices with computed remediation
For some practices, a remediation cost can be automatically computed.

Comment Rate. The complexity for remediation of the comments rate practice closely
follows the practice assessment formula. It depends on the cyclomatic complexity v(G)
and the goal score. From the complexity an expected comment rate is computed. The
remediation cost is based on the difference between the current number of comment
lines and the target number of comment lines computed with the expected comment
rate. There is no impact when changing comments.

8

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Concerns: However, the complexity of remediation depends on factors external
to the source code, such as developer knowledge of the code. This can be taken into
account with an empirical recallFactor, especially for legacy projects.

complexity = goalscore × (1− 10−v(G)/15)

expectedCommentRate = complexity
9−complexity

Egoal = URC × SLOC × expectedCommentRate, absolute effort as the
expected number of comment lines

Ecurrent = URC × SLOC × currentCommentRate

URC = edit

– The URC can be multiplied by an empirical recallFactor depending on
the current code knowledge by the development team

W = Egoal − Ecurrent, remediation cost to enhance the given practice for the
faulty component from its current state to the goal score.

Number of methods. A typical remediation is to split the class into smaller classes.
The number of new classes depends on the goal of the practice: we count as many
new classes so that each has no more methods than the NOMmax computed from the
goalscore.

Concerns: Correcting this practice also depends on the cohesion of the class. The
more cohesive is the class (i.e., the tighter the coupling between methods), the more
difficult it is to split the class. LCC could be used by an expert to assess the case.

Another concern is whether the class split touches the public API. That is, whether
the split keeps the public API in the (smaller) origin class or whether the split scatters
the public API across the new classes. In the second case, we also compute the cost of
updating call sites to the public API.

First, given the class metrics, a maximal number of methods is computed for the
class to achieve the goal score (following the practice formula).

• if
∑

v(G) ≥ 80 then NOMmax = 30− 10× log2(goalscore)

• if
∑

v(G) ≥ 50 and NOM ≥ 15 then NOMmax = 20− 30× (goalscore − 2)

• if
∑

v(G) ≥ 30 then NOMmax = 15− 15× (goalscore − 3)

Once NOMmax is set, we can compute the complexity and the cost based on split-
ting the initial class into a number of new classes:

• Complexity: numberOfNewClasses = NOM/NOMmax

• Impact: numberOfCallSites, number of call site updates to follow the API
split between new classes (minimum 1)

• URC1: SplitClass; URC2: UpdateCallSite

9

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

• W = URC1× numberOfNewClasses + URC2× numberOfCallSites

Notice that as we split the class into smaller entities, we can not predict the respon-
sibility of each new class and in particular what will be their cyclomatic complexity.
Hence, each new class will get a different quality score (sill better than the initial class).
The goalscore looks like more of a quality parameter than an expected score outcome.
This note holds for many of the below remediation practice, as they involve the creation
of new entities with hard to predict parameters.

Method size. The remediation for this practice is to split the long method into smaller
methods. The number of new methods depends on the goalscore of the practice: we
count as many new methods so that each is no longer than the max number of SLOC
to achieve goalscore.

Concerns: applying this remediation may induce a defect in the Number of methods
practice. This problem could be adressed by remediation strategies optimizing the
remediation plan.

• SLOCmax = 70− 21× log2(goalscore)

• numberOfNewMethods = SLOC/SLOCmax

• complexity = v(G)× numberOfNewMethods

• No impact unless some new methods need to be moved to external classes

• URC: ExtractMethod

• W = URC × complexity

Class cohesion. This practice qualifies the relations between methods inside a class. If
the cohesion is low, one solution is to split the class in part with high cohesion.

Concerns: a problem is that when class does not define enough behavior it may
be tempting to split the class because state is not considered as used together. Such a
practice may lead to even smaller data classes which is not a good design either. Often
it is important to identify if “Move Behavior Close to the Data” is applicable [DDN02],
since data classes often gets their behavior distributed in their clients.

• Complexity: numberOfNewClasses = [LCOM2], since LCOM2 gives the
number of connected components in the graph

• Impact: numberOfCallSites, number of call site updates to follow the API
split between new classes (minimum 1)

• URC1: SplitClass; URC2: UpdateCallSite

• W = URC1× numberOfNewClasses + URC2× numberOfCallSites

The complexity does not depend on a goalscore because the practice has a discrete
notation system (see Workpackage 1.3). Instead, we consider a remediation which is
both maximal and easy by splitting the class into its connected components.

10

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Swiss Army Knife. This practice aims at detecting Swiss Army Knife classes (classes
with too many responsibilities or collaborators). The solution is to break the big utility
class into smaller classes which are more cohesive and specific to a concern. In the
process, the developer may identify utility methods which can be extracted from utility
class as regular instance methods.

Concerns: Fixing this kind of class may not be simple, since it has probably many
clients. Identifying specific groups of coherent collaborators may also be a challenge.

• Complexity: numberOfNewClasses = maxOf

– Ca/20

– lcom2/50

– rfc/30

• Impact: numberOfCallSites, number of call site updates to follow the API
split between new classes (minimum 1)

• URC1: SplitClass; URC2: UpdateCallSite

• W = URC1× numberOfNewClasses + URC2× numberOfCallSites

The complexity does not depend on a goalscore because the practice depends on a
“all or nothing” computation (see Workpackage 1.3).

Spaghetti Code. The solution is to extract methods from the complex method.
Concerns: Extracting methods has no impact unless one needs to move data to ex-

ternal classes. The practice definition in the workpackage 1.3 only takes into account
cyclomatic complexity but a real spaghetti method may involved a lot of direct refer-
ences to other classes and this coupling and tangling may be difficult to fix with just a
simple extract method operation.

• eV (g)max = 6− 3× log2(goalscore)

• Complexity: numberOfNewMethods = [eV (g)/eV (g)max]

• URC: extractMethod

• W = numberOfNewMethods× URC

Copy Paste. The solution is to extract copied lines and to factor all call sites.
Concerns: Note all duplicated code is worth fixing. Getting overly abstract meth-

ods may lead to unreadable code. Also the number of occurrences coupled with the
size of the duplication is an important dimension to take into account. It is probably
more important to reduce the number of clones than duplication between two entities.
Inside the same class duplication may be easier to fix than between siblings or parent-
child classes. Finally duplication between separate hierarchies may require to extract a
third object which may be non trivial.

• Complexity: rateOfCopiedLines

11

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

• Impact: number of copy sites

• URC: extractMethod + UpdateCallSite

• W = extractMethod + numberOfCopies× updateCallSites

Law of Demeter. The foundation of Law of Demeter is the respect of encapsulation.
Violations of the Law of Demeter indicate that behavior is not defined in the same
class that the data they used [DDN02]. The general solution is to define new methods
through the chain of calls in order to move the behavior closer to data.

Concerns: Violation of Law of Demeter are often coupled to duplicated code, since
clients may define behavior instead of the class themselves.

• complexity =
∑

numberOfDistinctPaths

• impact =
∑

length(eachPath)

• W =
∑

numberOfSites× length(path) for each distinct path

Subclass access. It qualifies the problem that arises when a class uses its subclasses.
Concerns: there are some cases where the superclass acts as a factory coupled with

a facade and create instances of its subclasses, all classes sharing the same API. In
addition it may happen that the invoked method is calling a set of other collaborating
methods. The challenge is that it may not be clear whether methods of the superclass
should move down to the subclass or the inverse. A simple solution may be that an
abstract method is missing in the superclass.

• URC: extractMethod + UpdateCallSite

• Volume: Numberofsubclasses ∗ nbmethodsinvokedbythecalledmethod

2.3 Practices without computed remediation
We group in this section practices for which we do not propose any remediation

cost. This happens when there is a general lack of information to assess a defect or
propose a unique solution. For example, afferent coupling and efferent coupling prac-
tices are indicators which must be coupled with other practices to assess a component.

Inheritance Depth. This practice is difficult to solve as it indicates a potential risk
rather than a good practice to follow. Tall and narrow inheritance trees are difficult
to understand and refactor since they are the places of Yo-Yo and fragile base class
problems [Tan95, WH92]). In addition, there is no obvious guidelines to systematically
redesign into a good inheritance hierarchy. Often subclassing from a framework leads
to deep inheritance hierarchy but there is no much we can do about it.

Consequently, it is advised to address this problem as soon as possible, during the
design phase of the development lifecycle. During the implementation phase, we do
not address the cost of correcting the hierarchy, as it requires an analysis of design and
many different solutions leading to various refactoring plans.

12

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Efferent Coupling. Efferent coupling measures the strength with which a class refers
to the rest of the system. Possible solutions exist such as splitting the class (if the class
is a swiss army knife), delegating behavior to intermediate class, or removing code (if
the class contains dead code).

Concerns: Having a class with a high efferent coupling is not always a bad sign.
Indeed, first it means that the class is reusing behavior. Some classes build their behav-
ior on other classes using encapsulation so this is a normal behavior. Some class like
UI classes have often a high efferent coupling, but this is clearly not a quality problem.

Afferent Coupling. This is particular to interpret: classes should be called for reuse,
but the more they are called, they less they can change. Fixing high afferent coupling
requires developer knowlegde.

Stability and abstractness level. This practice is for packages [Mar03]. The idea is
to support a separation between interface and implementation. The solution is to move
classes.

Concerns: Having abstract only packages is not a good design by itself. It may
make sense when the language support interfaces. Then since object-oriented program-
ming is based on late-binding, a package can define a frame in which another package
will extend the proposed behavior. Identifying stable packages is a real challenge too.
Therefore we cannot propose an estimate.

Class specialization. As this practice should be deprecated (See WorkPackage1.3), no
remediation is proposed.

Dependency Cycle. This practice identifies cycles between packages.
Concerns: Several propositions exist to remove a cycle: move a class, move a

method, reverse dependency, merge packages, introduce a registration mechanism. The
solution depends on the coupling between packages in cycle and the dependency type.
There is clearly no magic, in particular because it may be simpler to remove several
dependencies in some cases and be extremely difficult to remove a single dependencies
in others.

13

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

3. Unit Remediation Change Cost
When changing a piece of code several costs are involved. Here we analyze the cost of
a list of well-known main code changes.

Costs cannot be quantified in isolation. Context represents some objective and uni-
versal properties of the refactored system, primarily the number of components touched
by the refactoring, so that there is no need of specific metrics to evaluate the cost of
one refactoring.

Here is a list of points that can be taken into account to characterize the context.

• Necessity of maintaining backward compatibility.

• Number of tests related to the touched components.

• Project phase. In early project phase, changes are often much better accepted
than at the end of a project or close to a release date.

The cost does not measure the required analysis but just gives a cost to the actions
to be performed when we know what to do and its costs on the system. We distinguish
the following costs: the elementary costs and code change cost.

3.1 Elementary costs.
• basicCost: the cost of republishing and running tests.

• deprecation: the cost of adding a deprecated method.

• edit: the cost of changing some expressions manually.

3.2 Code Change Costs

Add New method. cost = edit. The cost of adding a new method is mainly the one
of specifying it.

Remove Unused Method. cost = deprecation. Removing an unused method in
addition to the basic cost may only incur to add some deprecation statement.

Remove Used Method. cost = deprecation + (removeCallSite ∗ callSite) ∗
package. Removing a used method involves to remove all the calling places in dif-
ferent packages.

Rename monomorphic method. cost = CopyNewmethod+RemoveUsedMethod+
deprecation. The cost of renaming a method is not the same as remove the method
and adding a new one since it does not implies its specification.

Rename method. cost = addMethod+removeMethod+deprecation+(updateCallSite∗
callSite)+numberOfPackageDefining∗republish+(numberOfDefinitions∗
deprecation). Renaming a method implies checking all the senders and adding depre-
cation.

14

AirFrance - INRIA - Paris 8 - PSA - Qualixo Squale Consortium

Change method signature. cost = Renamemethod+delta∗callSite∗nbParameters.
(delta is the time to add or remove parameters in a callSite) Changing a method signa-
ture is nearly equivalent to a method rename.

Rename class. cost = addClass+removeClass+updateReferences∗callSite+
updateImport ∗ packageUsers + classDeprecation Renaming a class requires to
change all the callsite, imports, add deprecation.

Remove Call Site. cost = editCost ∗ callSite. The cost is mainly editing the call
site. This is a good indication of the minimal number of tests to run.

15

Squale Consortium AirFrance - INRIA - Paris 8 - PSA - Qualixo

Bibliography
[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented

Reengineering Patterns. Morgan Kaufmann, 2002.

[Mar03] Robert C. Martin. Are Dynamic Languages Going to Replace Static Lan-
guages?, 2003. http://www.artima.com/weblogs/viewpost.jsp?thread=4639.

[Tan95] C. Tanzer. Remarks on object-oriented modeling of associations. JOOP,
pages 43–46, February 1995.

[WH92] Norman Wilde and Ross Huitt. Maintenance support for object-oriented
programs. IEEE Transactions on Software Engineering, SE-18(12):1038–
1044, December 1992.

16

	Introduction
	Objective
	Challenges

	Model for remediation effort
	Remediation cost
	Practices with computed remediation
	Practices without computed remediation

	Unit Remediation Change Cost
	Elementary costs.
	Code Change Costs

